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In this paper we present a nonparametric approach to accelerated
life testing by deleting the requirement that the common parametric fam-
ily of life distributions under all the stresses be specified in ad-
vance. We do retain the requirement that the time transformation func-
tion be specified, and consider a version of the familiar inverse power
law. We show how the data from the accelerated life test can be used to
obtain a consistent estimate of the failure distribution at use condi-
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1. INTRODUCTION

It is a common practice to subject long-life items to larger

than usual stresses so that failure data can be obtained in a short

amount of test time. Such tests are called accelerated life tests, and

the goal is to infer the mean time to failure, or more generally, the

life distribution of the items at the usual stress level using failure

data from accelerated tests.

A parametric approach to this problem [3,5,101 involves making two

assumptions: first, the life distribution at each stress level is

assumed to come from the same parametric family which is opeified;

second, a relationship called the "time transformation function" is

assumed among the parameters of the various distributions. As an ex-

ample of the former, it is typical to assume that the life distributions

at the various stress levels are either exponential, Weibull, lognormal,

or an extreme value. The time transformation functions which are com-

monly assumed are the inverse power law, the Arrhenius law, the Eyring

law, or generalizations of these. Whereas the above assumptions may be

I
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reasonable in many situations, the possibility does remain that under

certain circumstances an analyst may be hesitant or unwilling to enter-

tain any one, or both, of these assumptions.

In this paper, we drop the requirement that the common parametric

family of life distributions under all stresses be specified, but retain

the requirement that the time transformation function be specified. The

time transformation function that we consider is a version of the in-

verse power law. By choosing this form, we do not sacrifice any lack of

generality, since the procedures mentioned here can easily be extended

to consider the other time transformation functions as well. The in-

verse power law being commonly used is considered here for purposes of

illustration. We indicate how the life distribution and the mean time

to failure at use conditions stress can be consistently estimated and

how hypotheses about the common parametric family of life distributions

can be tested. Thus we are able to test the validity of the distribu-

tional assumption traditionally made in accelerated life testing, if the

form of the time transformation function can be specified. In another

paper [6], both the assumptions mentioned before have been dropped and

the problem has been treated completely nonparametrically. However, the

statistical precision of the results obtained there is less than that

which could be achieved by making one or both of the aforementioned

assumptions.

We should remark that the dual problems of estimation and testing

for the goodness of fit at use conditions stress have already been con-

sidered in two separate papers by Shaked, Zimmer, and Ball [9], and by

Sethuraman and Singpurwalla [8]. These papers emphasize technical de-

tails pertaining to a formal justification of the methodology, the de-

velopment of the appropriate formulae, and the performance of the pro-

cedures. Thus, a practitioner interested in using the methodologies may

find it difficult to extract that information which is pertinent to his

goals. Furthermore, the results of the above two papers complement each

other and can therefore be combined to constitute a useful package for a I

nonparametric approach to inference from accelerated life tests.

-2-
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Our goal in writing this paper is to combine the techniques of

[8] and [9] in a manner than is comprehensive and user-oriented so that

this nonparametric approach to accelerated life testing is accessible to

the reliability analyst. We demonstrate the utility of this approach by

applying it to some data from a realistic situation.

2. A MODEL FOR ACCELERATED LIFE TESTING

Let VI,V 2, ..,Vk  and V0 denote the accelerated and the use

conditions stresses, respectively, and let F1 ,... ,Fk and F0 denote

the corresponding cumulative distribution functions. We shall assume

that F F...,Fk belong to a common but unknown family of distributions,
I | .(t)= FAV t , =OF....k.,,2.k

and that for some distribution F , which also belongs to this family,

Ia F (t) = F(AV01t) , i=o,...,k ,(2.1)
1 1

where A > 0 and a > 0 are unknown constants.

This assumption means that a change of stress does not change the

shape of the life distribution, but only changes its scale. This model

is a generalization of the familiar power law model which is tradition-

ally applied to the scale parameter of the failure distribution [4, 5,

11].

Our goal is to estimate F0 , the life distribution under use

conditions stress, and to perform some goodness of fit tests for hypoth-

eses about the general family of distributions to which F , and
. F0 ..... F k  belong.I kI

* - 3. ESTIMATION OF F0

Typically, data from an accelerated life test consists of the set

* of observations T , Z=l,...,ni , i=l,...,k , where T is the time

-3-
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to failure of the Uh item in a sample of size ni that is run under

the constant application of stress V. , i=l,...,k . We assume that
1

V1...V k ' k , and nl,...,nk are all fixed in advance. If data at

the nonaccelerated stress level V are also available, then the proce-

0

dure to be described can still be used, but by augmenting a 0 to the

range of indices i and j below.

3.1 Background

Denote the scale factor between F. and F. by ij , where

0.. = AV. /AV. = (V./Vi ij (3.1)
1J 3 1 i](1

The first step in the procedure for estimating F0  is the estimation of

a . A method for estimating a is suggested by (3.1), since

a = log(a ij )/(logV. -logV i)

1]3

n.i

Let T 1i 
= n- l X Tiz , i=l,...,k , be the sample means of the

Z=I

T ik's , Z=1,...,n i . Then, an estimator of eij is

0ij = T ,/T. , i# j

from which we can obtain an estimator of a as

ij = log(Oij ) / (logV - logVi) , i j

The !-k(k-l) estimators of a can be used to form a weighted average

of the ax is which gives us the final estimate of a as
- of the ij '

k k 2(3)
log( / Vi )  f )

i j+l 3.+

44
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If a were known, we could, in the light of relationship (2.1),

transform (rescale) the times to failure from any stress level to corres-

pond to the times to failure from any other stress level. Thus, observ-

ing Ti9. £l,...,n i  under stress V.i is, under our model, equivalent

to observing (Vi/V.)"T , i =,I . ....n. under stress V. . Since a is

not known, we shall use its estimate & to rescale our variables. This

is the key notion which enables us to obtain an estimate of F0

3.2 Estimation of F0  and the Mean Time

to Failure under V0

Using & given by (3.2), we define the N =  Yk resealed

variables

V 0

and estimate F0  by the empirical distribution function of the Ti 's

Thus, F, an estimator of the failure distribution at use conditions

stress V , is given by

F (t )  {number of observations among the T S < t

for 0 < t < . (3.4)

An estimator of the mean time to failure at use conditions

stress, say p , is given by

k nk n( V

i=i £=i i=l

The estimators F and p are s-consistent [9]. A method for obtaining
0

the approximate s-uniform confidence limits for F0  using F is dis-

cussed in Section 5.

-5-

* *- .. *-*

__J ... . .. . . ... , . " , . .. . .T, , r , , " . .V



T-425

4. GOODNESS OF FIT TESTING OF HYPOTHESES FOR F0

Having estimated F0 by F0 given by (3.4), our next goal is to

see if F0  is a member of a specified family of distribution functions.

This type of information may be of interest in its own right, or it can

be used to obtain s-uniform confidence bounds for F0 . Testing to see

if F0 is a member of a specified family is equivalent to testing wheth-

er F1 ... ,Fk are also members of the same family. For reasons given in

[8], it is convenient for us to consider the random variables X i =

logTi. , =l,.. , i=l,...,k , and test for the underlying distribu-

tion of the X jIs , say Hi , i=l,. ..,k . For example, if we wish to

test the hypothesis that the F.'s are members of the family of Weibull
i

distributions, then this is equivalent to testing whether the H.'s are
I

members of the family of extreme value distributions [3]. Similarly, if

we wish to test the hypothesis that the F.'s are members of the lognor-
l

mal family of distributions, then this is equivalent to testing whether

the H.'s are normal [3].
1

There are two limitations to our testing procedure. The first

one is that we can only work with complete (uncensored) samples, and the

second one is that the H.'s can only be tested for being members of theil
s-location-scale family of distributions. The commonly used members of

the s-location-scale family are the normal, the exponential, and the

extreme-value distributions. Since H. is an exponential distribution

* whenever F. is a Pareto distribution, and since a Pareto distribution
i

is rarely used to describe life lengths, the desire for testing whether

H. is an exponential is not very common.i

The procedure for testing depends upon the particular family of

distributions that is being considered; this will be made clear in the

-6-
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following section. Furthermore, the procedure is valid when each of the

n. 's is large.
1

4.1 Testing Whether F0 is a Weibull

Suppose that we wish to test the hypothesis that the common under-

lying family of distributions is a Weibull distribution. This is equiva-

lent to testing whether the H 's are extreme value distributions
i

H.(X) 1 - exp exp i=l,. .. ,k

where a . and . are the s-location and the s-scale parameters, re-1 1

spectively. The test procedure entails the following steps.

(1) Using Xi, .Z=l,...,n i , we first obtain the s-maximum

likelihood estimates of C. and (3. , say c. and 3.1l1 1

respectively, using the above specified H. Methods for
1

obtaining these estimates are given in [3]; they can also

be obtained using the computer program discussed in Sec-

tion 4.3.

(2) For 0 < t < 1 , we compute

W. (t) = 1 I (H -- I H < t
, where

(x -i X 1tO A expt exp(_XI&&i)I
H .

and I{E} denotes the indicator of the event E . Verify

that W.(t) is merely the empirical distribution function
1

of the Hi  )/ i , k=l, ... ,n.

71-
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(3) We then compute, for 0 < t < I

V.(t) = J i~t)-t )11 1

and repeat the Steps (1), (2), and (3) for all values of

i , i=l,...,k .

(4) Our test statistic D is the s-Kolmogorov-Smirnov statis-

tic obtained by pooling the V.(t)'s in a manner shown
1

below. Let

k
A = n./ ni ,and let

k

Z(t) = ) A.V.(t) , 0 < t < I
1=1

I -

Then D max(D ,-D-) , where

= max I (* Z(t) , and

0<t<l ~

D = min A2 Z(t)

O<t<l ikI

(5) We will accept the hypothesis that the common underlying
family of distributions is a Weibull (i.e., the H 's are

i

extreme value distributions) at a desired level of signif-

icance, say a , if the value D is less than the critical

values given below. These values have been abstracted

from [21.

Level of Significance, a .10 .05 .025 .01

Critical. Values of D, D* .800 .870 .940 1.000

-8
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4.2 Testing Whether F0 is Lognormal

Testing to see if the common underlying family of distributions

is a lognormal is equivalent to testing whether the H.'s are normal1

distributions,

H W f exp } du

i=l, .. ,k , where the ai. and B. are the s-location (mean) and s-
1 1

scale (standard deviation) parameters, respectively. The test proce-

dure entails the following steps.

(1) Using Xi. , $=l ... , we obtain

n. n.

N. = X /fn. and 2 = Y ) 2/ (ni iz i i (X iz-c ix ni l

the s-maximum likelihood estimators of a. and o

respectively.

(2) We repeat steps (2), (3), and (4) of Section 4.1, except

that now

HZ i x 1 (u

i=l,2,...,ni , and to test for the significance of D , we

use the following critical values abstracted from [7].

Level of Significance, a .10 .05 .025 .01

Critical Values of D, D* .752 .835 .910 .991

-9
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4.3 Some Comments on the Test Procedure

The power of the above tests against various alternatives is dis-

cussed in (8]. The main point here it that it is difficult to distin-

guish between the Weibull and the lognormal alternatives, so that the

final choice of the family of distributions to which F0 belongs must

be based on criteria other than a formal goodness of fit test. For ex-

ample, if the hazard rate is known to be increasing in time, then the

distribution cannot be lognormal and the Weibull assumption should be

chosen.

To aid in the computation of D , and also the s-maximum likeli-

hood estimates cx. and 3. for the various hypotheses that we wish to
1 1

entertain, we have written a computer program, described in [1]. This

program can be made available to the interested reader.

5. UNIFORM CONFIDENCE BOUNDS FOR F

The approximate s-uniform (1-a)% confidence bounds for F0  can

be obtained once a test of hypothesis results in the acceptance of the

hypothesis. The approximate confidence bounds will be based on F0

given by (3.4) and the critical values D* given in Section 4.1 and

4.2. (The confidence bounds are approximate because of the finiteness

of the sample sizes, and because they are based on F0 and not on a

complicated transformation of {Z(t), t> 0} of Section 4.) These

bounds can also be used to obtain an approximate (1--a)% s-confidence

*' bound on p , the median of the time to failure distribution under V
0

Suppose that the procedure of Section 4.1 results in our accept-

ing the hypothesis that the H. are extreme value distributions. This
1

means that F0  is a Weibull distribution, so that the approximate uni-

form (l-cx)% confidence limits for F0 are given by
0

. -10 -
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0

where D* is the critical value of D corresponding to a , and N =
-k

Yi=l n. For example, if we choose a = .05 , then the approximate 95%

uniform upper and lower confidence limits for F are
0

g(t) = F0(t) + .870/R ,

and

h(t) = (t) - .870 ,
!0

respectively. In computing the above, we should make sure to confine

both g(t) and h(t) to be between 0 and 1.

In a similar manner, if the procedure of Section 4.2 results in

our acceptance of the hypothesis that F0  is a lognormal distribution,

then the 95% uniform confidence bounds for F0 (t) will be F (t) 4

.835/.

The uniform confidence bounds g(t) and h(t) can be used to

obtain an approximate s-confidence bound for i by taking their in-
-l

verses. Thus, the approximate s-confidence bounds for v are g (.5)

and h- (.5) , where g- (.5) < h- (.5)

6. EXAMPLE

We apply the methodology of this paper to some accelerated life

test data given in [4] and [5]. These data represent the times to

breakdown of an insulating fluid subjected to seven elevated voltage

levels. Since the methodology of Section 4 is valid for large sample

sizes, and since three of the stress levels of [5] contain too few

failures, we delete them from our considerntion, and consider an ab-

stracted version of the data. These data are given in Table 1, and have

also been considered in [6). The use conditions stress corresponds to

V = 20 kilovolts.

--- .---11--
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TABLE 1

TIMES TO BREAKDOWN OF AN INSULATING FLUID
(IN MINUTES) UNDER VARIOUS VALUES OF THE

STRESS

36 kV 34 kV 32 kV 30 kV

.35 .19 .27 7.74

.59 .78 .40 17.05

.96 .96 .69 20.46

.99 1.31 .79 21.02
1.69 2.78 2.75 22.66

1.97 3.16 3.91 43.40

2.07 4.15 9.88 47.30

2.58 4.67 13.95 139.07
2.71 4.85 15.93 144.12
2.90 6.50 27.80 175.88

3.67 7.35 53.24 194.90
3.99 8.01 82.85
5.35 8.27 89.29 N = 11

13.77 12.06 100.58
25.50 31.75 215.10

N = 15 32.52 N = 15
33.91 3

36.71
72.89

N = 19

6.1 Estimation of F0
I0

Using the failure times given in Table 1, we obtain via (3.2) an

estimate of C , ct = 16.9844 ; note that this estimate is different

from the estimate obtained in [9], since there, all the data of [51 were

_* used. We then rescale the data in Table 1 using (3.3), with a f

16.9844 and V = 20 , and use these to compute the empirical distribu-

tion function 0 , given by (3.4). This is our estimate of F0 , and

- 12 -
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is given in Figure 1. The median of these rescaled variables is easily

verified as being 45572 minutes, and an estimate of p' , obtained from

(3.5), is p = 105998 minutes. Other s-percentiles of F0 can also be

estimated using F0

6.2 Testing Hypotheses

A plot of the logarithms of the 60 rescaled observations men-

tioned in Section 6.1 on normal probability paper, Figure 2, suggests

that the logarithms of the failure times could be well described by a

normal distribulo'n.

The plot of Figure 2 suggests that we test for normality by

taking Hi , i=1,2,3,4 , to be normal distributions. Our estimates

((^ i) turn out to be (.902, 1.109), (1.786, 1.525), (2.228, 2.198),

and (3.821, 1.111); D is computed as .4023. From the table of criti-

cal values given in Section 4.2 we see that for a = .05 , D* = .835

and since D < D* , we have no reason to reject the null hypothesis that

the failure times of Table I could be described by a lognormal distri-

bution.

The approximate 95% uniform confidence limits for F are ob-
0

tained as P0 (t) ± .835/160 , and these are shown by the dotted lines of

Figure 1. The 95% confidence interval for Ii discussed in Section 5 is

obtained by reading the ordinates of the horizontal line at .5 in Figure

1; these turn out to be 32,320 and 64,000 minutes.

Since a Weibull distribution for times to failure has been as-

sumed in [5], it is appropriate that we test for this distribution as

well. We thus take Hi , i=l,...,4 to be an extreme value distribu-

tion and compute (ciIf) as (1.473, 1.154), (2.531, 1.353), (3.310,

1.898), and (4.373, .987); we obtain D as .88. From the table of

-13-
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critical values given in Section 4.3 we see that for (x .05 ,D*

.87 . Thus D is significant at the 95% level of significance, but

barely so.

Thus it appears that for this abstracted set of data, either the

lognormal or the Weibull distribution would provide an adequate descrip-

tion, with the lognormal having a slight edge over the Weibull. In

choosing between these two, one should remember that even though the

formal goodness of fit tests favor the lognormal, the Weibull with its

monotone failure rate may be a more appropriate distribution for de-

scribing the times to failure. The failure rate of a lognormal distri-

bution first increases and then decreases, and this may not be realistic

for the situation considered here.

I
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